
-AIM 8 SUPERCOMPUTER PRORRNINO ENVIRONMENTS(U) ILLINOIS UNIV ' 1/
AT UROANA CENTER FOR SUPERCOMPUTING1 RESEARCH ANO
DEVELOPMENT D A PAROM ET AL. 36 OCT 9? CSRD-673

UCfiSSIFID FOSR-TR-?-19S? F4299626-C-0136 F/12/5 NL

Emmonshhhm

WII 1 .0 1.6 1

AD-A 190 887)RT DOCUMENTATION PAGE Ell E r
1. lb. RESTRICTIVE MARKINGS W W v I I-am

2a. SECURITY CLASSIFICATION AUT ,L 3 DISTRIUT(ONa Ap(roi o d"....

2b. DECLASSIFICATION I DOWNGRA SO£,3L2 r 615%atio' ulimid*

4. PERFORMNG ORGANIZATION W UMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Board of Trustees of the, (If applicable)

University of Illinois AFOSR/NM

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

506 S. Wright St.
AFOSR/-W

Urbana, IL 61801 Bldg 410
Bollr Avyn r

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT T8TR9Wff§,.I'ICATION NUMBER
ORGANIZATION (If applicable)

AFOSR NM F49620-86-C-0136

Bc. ADDR)1y,ate, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT

Bldg 410 ELEMENT NO. NO. NO. ACCESSION NO.
Bolling AFB DC 20332-6448 61102F 2304 A3

11. TITLE (Include Security Classification)

Supercomputer Programming Environments

12. PERSONAL AUTHOR(S)
David A. Padua, Vincent A. Guarna Jr., Duncan H. Lawrie
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT
Publication FROM1It-IJ TOO 3p Oct 30T 87

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

- 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The quest to apply an ever-increasing amount of computing power to numerical applications has

resulted in the evolution of a broad spectrum of ideas and implementations for high perfor-

mance computing systems. The architectural complexity of these high performance systems

typically requires special tools and techniques to achieve efficeient utilization of
availabl

computational resources. These tools range from automatic restructuring and optimizing com-

pilers to interactive debugging and performance analysis systems. The programming environmen

for these systems must be general and adaptive, providing the appropriate level of
assistance

for users of varying levels of sophistication. This paper presents recent developments in

supercomputer environments, and focuses in more detail on the Cedar Project which
is currentl

under way at the University of Illinois Center for Supercomputing Research and Developement.

The Cedar Project consists of the construction of a prototype multiprocessor, restructuring

compilers for the Fortran and C programming languages, and an integrated graphics-based
pro-

gramming environment intended to serve the needs of scientific applications users.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0UNCLASSIFIED/UNLIMITED [SAME AS RPT. 0- DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL ' 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOLp , ,._ UNCLASIFID-UNLMITE(202) 767-5026 NM'

DOFORM 1473,64 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

. T1I'

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

GENERAL INFORMATION
The accuracy and completeness of all information provided in the DD Form 1473, especially classification and

distribution limitation markings, are the responsibility of the authoring or monitoring DoD activity.

Because the data input on this form will be what others will retrieve from DTIC's bibliographic data base or may
determine how the document can be accessed by future users, care should be taken to have the form completed by
knowledgeable personnel. For better communication and to facilitate more complete and accurate input from the
originators of the form to those processing the data, space has been provided in Block 22 for the name, telephone
number, and office symbol of the DoD person responsible for the input cited on the form.

All information on the DD Form 1473 should be typed.

Only information appearing on or in the report, or applying specifically to the report in hand, should be reported.
If there is any doubt, the block should be left blank.

Some of the information on the forms (e.g., title, abstract) will be machine indexed. The terminology used should
describe the content of the report or identify it as precisely as possible for future identification and retrieval.

NOTE: Undassified abstracts and titles describing classified documents may apear searately from the documents
in an unclassified context. e.a.. in DTIC announcement bulletins and bibliographies. This must R2 considered
in the preparation and marking of unclassified abstracts and titles.

The Defense Technical Information Center (DTIC) is ready to offer assistance to anyone who needs and requests it.
Call Data Base Input Division, Autovon 284-7044 or Commercial (202) 274-7044.

SECURITY CLASSIFICATION OF THE FORM
In accordance with DoD 5200. 1-R, Information Security Program Regulation, Chapter IV Section 2, paragraph 4-200,

classification markings are to be stamped, printed, or written at the top and bottom of the form in capitalletters that
are larger than those used in the text of the document. See also DoD 5220.22-M, Industrial Security Manual for
Safeguarding Classified Information, Section II, paragraph 1 la(2). This form should be unclassified, if possible.

SPECIFIC BLOCKS

Block 5. Monitoring Ogganization Report Number(s): Enter
Block a. Report Security Classification: Designate the highest the unique alphanumeric report number(s) assigned by the

securiyclassification of the report. (See DD 5220. -R, Chapters I IV, Monitoring Agency. This should be a number assigned by a DoD
Vii, Xi, Appendix A,) or other government agency and should be in accordance with

ANSI STD 239.23-74. If the Monitoring Agency is the same as the

Block b Restricted Marking: Enter the restricted marking or Performing Organization, enter the report number in Block 4 and
warningnotice of the report (e.g., CNWDI, RD, NATO). leave Block 5 blank.

Block 6a. Name of Performing Organization: For in-house
Block 2a. Security Classification Authority: Enter the reports, enter the name of the performing activity. For reports

commoniy used markings in accordance with DoD 5200.1-R, Chapter prepared under contract or grant, enter the contractor or the
IV, Section 4, paragraph 4-400 and 4-402. Indicate classification grantee who generated the report and identify the appropriate
authority, corporate division, school, laboratory, etc., of the author.

Block 6b. Office Symbol: Enter the office symbol of the
Bock 2b Declassification / Downgrading Schedule: Indicate Performing Oganization.

specTitc date or event for declassification or the notation,
'Originating Agency Determination Required' or "OADR." Also Block 6c. Address: Enter the address of the Performing
insert (when applicable) downgrade to Organization. List city, state, and ZIP code.
on (e.g., Downgrade to Confidential on 6 July
1983). (See also DoD 5220.22-M, Industrial Security Manual for Block 7a. Name of Monitoring Organization: This is the
Safeguarding Classified information, Appendix II.) agency responsible for administering or monitoring a project.

contract, or grant. If the monitor is also the Performing
Organization, leave Block 7a. blank. In the case of jointnareTE: mst be in ss 2a a bee when the sponsorship, the Monitoring Organization is determined byoriginal rotunas d a sn Urad. advance agreement. It can be either an office, a group, or a
committee representing more than one activity, service, or

Block 3. Distribution/Availability Statement of Report: Insert the agency.

statement as it appears on the report. If a limited distribution Block 7b Address: Enter the address of the Monitoring
statement is used, the reason must be one of those given by DoD Orga iiiiion. Include city, state, and ZIP code.
Directive 5200.20, Distribution Statements on Technical Documents,
as supplemented by the 18 OCT 1983 SECDEF Memo, "Control of Block Ia. Name of Funding/Sponsoring Organization:
Unclassified Technology with Military Application.' The Distribution Enter tWe fuii official name of the organization under whose
Statement should provide for the broadest distribution possible immediate funding the document was generated, whether the
within limits of security and controlling office limitations, work was done in-house or by contract. If the Monitoring

Organization is the same as the Funding Organization, leave Ila
blank.

Block 4. Performing Organization Report Number(s): Enter the
unique alphanumeric report number(s) assigned by the organization Block 8b Office Symbol: Enter the office symbol of the
originating or generating the report from its research and whose Funding/Sponsoring Organization.
name appears in Block 6. These numbers should be in accordance Block Ut Address: Enter the address of the Funding/
with ANSI STD 239.23-74, "American National Standard Technical
Report Number.' if the Performing Organization is also the Sponsoring organization. Include city, state and ZIP code.
Monitoring Agency, enter the report number in Block 4.

DO FORM 1473, 64 MAR

Block . COSATI Codes: This block provides the subject
Block 9. Procurement Instrument Identification Number: For a coverage ol the report for announcement and distribution

contractor grantee report, enter the complete contract or grant purposes. The categories are to be taken from the "COSATI
number(s) under which the work was accomplished. Leave this block Subject Category List' (DoD Modified), Oct 65, AD-624 000. A
blank for in-house reports. copy is available on request to any organization generating

reports for DoD. At least one entry is reqored as follows:
hoc~k 10. Source of Funding (Program Element. Project. Task Fed-oidct ujc oeaeo eot

Area, andWork Unit Number(s): These four data elements relate to Field -to indicate subject coverage of report.
the DoD budget structure and provide program and/bi Group - to indicate greater subject specificity of information
administrative identification of the source of support for the work in the report.
being carried on. Enter the program element, project, task area,
work unit accession number, or their equivalents which identify the Sub-Group - if specificity greater than that shown by Group
pincipal source of funding for the work required. These codes may is required, use further designation as the numbers after the

obtained from the applicable DoD forms such as the DO Form period (.) in the Group breakdown. Use only the designation
1498 (Research and Technology Work Unit Summary) or from the provided by AD-624 000.
fund citation of the funding instrument. If this information is not
available to the authoring activity, these blocks should be filled in by Example: The subject 'Solid Rocket Motors" is Field 21,
the responsible DoD Official designated in Block 22. If the report is Group 08, Subgroup 2 (page 32, AD-624 000).
funded from multiple sources, identify only the Program Element
and the Project, Task Area, and Work Unit Numbers of the principal Block 18. Subject Terms: These may be descriptors,
contributor. keyw7ors, posting terms, identifiers, open-ended terms, subject

headings, acronyms, code words, or any words or phrases that
identify the principal subjects covered in the report, and that

Bak11. Title: Enter the title in Block 11 in initial capital letters conform to standard terminology and are exact enough to be
exacty asit appears on the report. Titles on all classified reports, used as subject index entries. Certain acronyms or "buzz words"
whether classified or unclassified, must be immediately followed by may be used if they are recognized by specialists in the field and
the security classification of the title enclosed in parentheses. A have a potential for becoming accepted terms. "Laser" and
report with a classified title should be provided with an unclassified 'Reverse Osmosis' were once such terms.
version if it is possible to do so without changing the meaning or
obscuring the contents of the report. Use specific, meaningful words If possible' this set of terms should be selected so that the
that describe the content of the report so that when the title is terms individually and as a group will remain UNCLASSIFIED
machine-indexed, the words will contribute useful retrieval terms. without losing meaning. However, priority must be given to

specifying proper subject terms rather than making the set of
terms appear "UNCLASSIFIED.* Each term on classified reports

If the report is in a foreign language and the title is given in must be immediately followed by its security classification,
both English and a foreign language, list the foreign language title enclosed in parentheses.
first, followed by the English title enclosed in parentheses. If part of
the text is in English, list the English title first followed by the foreign For reference on standard terminology the "DTIC Retrieval
language title enclosed in parentheses. If the title is given in more and Indexing Terminology" DRIT-1979, AD-A068 500, and the
than one foreign language, use a title that reflects the language of DoD "Thesaurus of Engineering and Scientific Terms (TEST) 1968,
the text. If both the text and titles are in a foreign language, the AD-672 000, may be useful.
title should be translated, if possible, unless the title is also the name
of a foreign periodical. Transliterations of often used foreign
alphabets (see Appendix A of MIL-STD-8478) are available from DTIC Block 19. Abstract: The abstract should be a pithy, brief
in document AD-A080 800. (prefera-by not to exceed 300 words), factual summary of the

most significant information contained in the report. However,
since the abstract may be machine-searched, all specific and
tieaningful words and phrases which express the subject contentBlock 12. Personal Author(s): Give the complete name(s) of the of the report should be included, even if the word limit is

autho-r~sinthis order: last name, first name, and middle name. In exceeded.
addition, list the affiliation of the authors if it differs from that of
the performing organization. If ossible the abstract of a classified report should be

unclassified and consist of publicly releasable information
(Unlimited), but in no instance should the report contentList all authors. If the document is a compilation of papers, it description be sacrificed for the security classification.

may be more useful to list the authors with the titles of their papers
as a contents note in the abstract in Block 19. If appropriate, the
names of editors and compilers may be entered in this block. NOTE: An unclassified abstract describing a classified

document may appear separately from the documentin an unclassited context-e.. in OTIC announcement
ok1,a. Type of Report: indicate whether the report iso a I ucts. This must cnbe €sider ,m

Bk~k13a Typ ofRepot: ndicte hethr te reortis e preparation and marking ot unclassified abstracts,summary, in7a, annual, progress, interim, etc.

For further information on preparing abstracts, employing
scientific symbols, verbalizing, etc., see paragraphs 2.1(n) andBl*c 13b. Time Covered: Enter the inclusive dates (year, 2.3(b) in MIL-STD-847B.

Fonff-iyT~o the period covered, such as the life of a contract in a
final contractor report. Block 20. Distribution / Availability of Abstract: This block

must e completed for all reports. Check the applicable
statement: 'unclassified/unlimited,' 'same as report, or, if thePh 4. Date of Report: Enter the year, month, and day, or report is available to OTIC registered users" OTIC users."

the ye the month the report was issued as shown on the cover.

@2.V2. Abstract Security Classification: To ensure proper
safeguarding of information, this block must be completed for allBock 15. Page Count: Enter the total number of pages in the reports to designate the classification level of the entire abstract.

report tRlYtontain information, including cover, preface, table of For CLASSIFIED abstracts, each paragraph must be preceded by its
contents, distribution lists, partial pages, etc. A chart in the body of security classification code in parentheses.
the report is counted even if it is unnumbered.

Re025k 2,b,. Name, Telephone and Office Symbol of
Re nsponible Individual: Give name, telephone number, andSupplementary Notation: Enter useful information office symbol of DoD person responsible for the accuracy of the

abou"t t414rport in hand, such as: "Prepared in cooperation completion of this form.
with...,' Translation at (or by)...,' 'Symposium....' If there are
report numbers for the report which are not noted elsewhere on the
form (such as internal series numbers or participating organization
report numbers) enter in this block.

iJ

DO FORM 1473, 84 MAR *u. ,inMot f g offm IU8-42""A fts

CSRD report no. 673

XFQSR. Tk. 87 -1 98 7

Center for
Supercomputing Research and Development

Supercomputer Programming Environments

David A. Padua
Vincent A. Guarna, Jr.

Duncan H. Lawrie

June 9, 1987

University of Illinois at Urbana-Chiampaign
104 S. Wright Street

U~rbana, Illinois 61801
(217) 333-6223 %uicsrd @a.cs.uiuc.edu

Version: 2384-June 9, 1987

Produced: Tue Jun 9 13:15:34 CDT 1.987

88 1 3040

OUTLINE

1 ABSTRACT ... 1
2 INTRODUCTION .. 1

3 ISSUES IN PARALLEL PROGRAMMING LANGUAGES 3
4 STATE-OF-THE-ART PROGRAMMING TOOLS ... 8

Restructuring and Interactive Restructurers .. 8

Debuggers ... 13
Perform ance Evaluation ... 16

Integration .. 19

5 ACKNOW LEDGEM ENT ... 22

6 REFERENCES .. 22

Accesion For

NTIS CRA&I
DTIC TA13Unaiunounced 0
JubtiIC~atOI)

By
i ---- 0-

Ave~ i;:

Dist j j 0,

2384.1

CSRD report no. 673
Supercomputer Programming Environments

David A. Padua
Vincent A. Guarna, Jr.

Duncan H. Lawrie

June 9, 1987

Abstract

T),. quest to apply an ever-increasing amount of computing power to numerical applica-
4.AliIS has resulted in the evolution of a broad spectrum of ideas and implementations for
high performance computing systems. The architectural complexity of these high perfor-
mance systems typically requires special tools and techniques to achieve efficient utiliza-
tion of available computational resources. These tools range from automatic restructuring
and optimizing compilers to interactive debugging and performance analysis systems. The
programming environment for these systems must be general and adaptive, providing the
appropriate level of assistance for users of varying levels of sophistication. This paper
presents recent developments in supercomputer environments, and focuses in more detail
on the Cedar Project which is currently under way at the University of Illinois Center for
Supercomputing Research and Development. The Cedar Project consists of the construc-
tion of a prototype multiprocessor, restructuring compilers for the Fortran and C pro-
gramming languages, and an integrated graphics-based programming environment
intended to serve the needs of scientific applications users.

Keywords: scientific computation, parallel computation, parallel languages, vector
languages, programming environments, optimizing compilers, parallel debuggers

This paper will appear in the Proceedings of the Symposium on Parallel Computations
and Their Impact on Mechanics, to be held at the ASME Winter Annual meeting in Bos-
ton, December 13-18, 1087.

This work was supported in part by the National Science Foundation under Grant Nos.
US NSF DCR84-06916 and US NSF DCR84-10110, the US Department of Energy under Grant No.
US DOE DE-FG02.85ER25001, the United States Air Force under Grant AFOSR-85-0211 and by a donation
from the IBM Corporation.

2384.1

1 ABSTRACT

The quest to apply an ever-increasing amount of computing power to numerical applica-
tions has resulted in the evolution of a broad spectrum of ideas and implementations for
high performance computing systems. The architectural complexity of these high perfor-
mance systems typically requires special tools and techniques to achieve elflcient utiliza-
tion of available computational resources. These tools range from automatic restructuring

and optimizing compilers to interactive debugging and performance analysis systems. The
programming environment for these systems must be general and adaptive, providing the
appropriate level of assistance for users of varying levels of sophistication. This paper
presents recent developments in supercomputer environments, and focuses in more detail
on the Cedar Project which is currently under way at the University of Illinois Center for
Supercomputing Research and Development. The Cedar Project consists of the construc-

tion of a prototype multiprocessor, restructuring compilers for the Fortran and C pro-
gramming languages, and an integrated graphics-based programming environment
intended to serve the needs of scientific applications users.

2 INTRODUCTION

Present supercomputerst require vcctorization of codes to achieve anywhere near their
performance potential. Additionally, on some machines, vector registers must be carefully
managed to avoid as much memory access as possible lest memory access become a
bottleneck. This must all be done while managing disk I/O which is vastly slower than

' In this paper we use the word supercomputer to refer to the fastest gteneral-purpose scientific comput-

erg, e.g., machines like the Cray X-%IP, Cray I, CDC Cyber 205, ETA 10, Fujitsu Facom VP, hitachi S.
810, and NEC SX. These machines can have at least several processors all sharing a common memory.
Other machines, for example NCUAE, hypercube, etc., have many prncesors and a distributed (unshared)
memory. These latter machines are striving for "super" status, and indeed some of these can provide super-
computer performance on certain applications. However, our expertise lies in the former area and we will
not address the latter machines.

1 I5(0I_ of&

the processor and I/O from some form of bulk random access memory.

The next generation of supercomputers will be even more complex than present super-
computers. Machines with multiple processors are already in the field. This will be the
primary characteristic of the next generation of supercomputers-multiprocessing2-but
more so. Yet techniques for using multiprocessors are poorly understood today. Not only
do programs need to be rewritten as they were for vector machines to capitalize on perfor-
mance gains available from multiprocessors, but often the algorithms themselves must be
redesigned to allow multiprocessing. Optimizing compilers are just beginning to do a
credible job of vectorization. They are a long way from being able to restructure a pro-
gram to use multiprocessors effectively, a process we call parallelization. Further, the
design of parallel algorithms is still a relatively new art.

Multiprocessing leads to other difficulties as well. Programming multiple, asynchro-
nous tasks is probably an order of magnitude more difficult than what most of us are used
to programming--a single execution stream. Once we start using multiple execution
streams, we must be careful about cases where multiple streams access the same data.
Where data access by multiple execution streams might cause a problem, we must use
some form of synchronization. And in machines lacking a shared memory, data must be
explicitly moved from processor to processor (or sometimes, rather than moving the data,
in effect the program is moved from processor to processor).

Debugging parallel programs is also an order of magnitude more difficult. For exam-
ple, most errors are not easily reproduced because the exact time ordering of the multiple
execution streams will vary from one run to the next. Thus, errors caused by poor con-
ceptualization of the synchronous/asynchronous nature of the program are not only the
easiest errors to mz ke, but the most difficult to find and reproduce.

Memories will also increase in complexity. For example, many new supercomputers
will of necessity use cache memories to better match the processor and memory speeds.
Consider, however, the effect of vectorization on cache memories. When a program is vec-
torized, the result is usually statements that compute on whole vectors at a time. Often
each vector in such a statement is only accessed once. Yet, if the vector is long (and the
longer the better for performance), then it may have the effect of flushing the cache.
Already, we see several common optimizations at odds. This same phenomenon adversely
affects the locality of programs in machines which have paged memories. But the com-
plexity does not stop there. New machines are likely to contain some mixture of local
memories (memory accessible by only one processor) and shared memory (memory shared
by some or all of the processors). To get the full potential performance of these machines,
data must be carefully allocated in the best memory depending on its access characteris-
tics. Often this allocation must change during the execution of the program.

Add to all this the increasing disparity between processor speed and I/O speed, and we
have even greater need for complexity in how I/O is handled. This in turn necessitates
multitracked I/O (streaming data to or from multiple disks simuitaneously,) disk caches,
and bulk random access memories.

It is perhaps ironic -,hat in this age of the microprocessor and personal computer, when
software is finally becoming easy, perhaps even fun to use, supercomputers are becomning
more difficult to use. We must see to it that this does not happen. Better programming
environments are needed- compilers, languages, debugging and performance tools--if we
are to make use of the tremendous potential offered by supercomputers.

We define multiprocessing to mean the use of more than one processor on one job. This is sometin,.s
called multitasking, and the term parailel proccssing has also come into vogue to mean the same thing. This

is different from vector proceesing, which means computing on vectors, usually with a pipeline processor like

the Cray series.

3 ISSUES IN PARALLEL PROGRAMMING LANGUAGES

Several approaches are possible in the design and selection of programming languages
for parallel processing. In this section we will discuss Fortran and its extensions. A few
remarks will be made at the end on alternative languages.

Fortran will be emphasized due to its predominance. It is safe to say that most of the
application code for parallel scientific computers is ia the form of numerical programs
written in Fortran, and that this situation will continue in the near future. Supercomput-
ers use either an optimizing compiler or Fortran extensions to exploit both vector and
asynchronous parallelism. We will discuss these two forms of parallelism next, starting
with vector parallelism.

Some vendors use standard sequential Fortran and rely on the compiler to exploit vec-
tor parallelism. These compilers include a vectorization phase where regular do loops are
internally transformed into vector assignment statements. To give the programmer con-

trol over what is vectorized and how, these Fortran compilers all accept some form of vec-
torization commands supplied via comment cards. Also, a programming style may be sug-

gested to the programmer to help the vectorizer.3 The main advantage of using standard
sequential Fortran is portability. Thus, Fortran programs (even if they were not written

for supercomputers) can often be efficiently run on a new supercomputer either without
change or with the addition of a few compiler directives with vectorization commands for
the new machine.

Another possible approach to exploit vector parallelism is to extend Fortran with vec-

tor assignment statements. Four types of constructs have been used for vector assignment
statements. The first construct, control vectors, was used by two early vector languages:
the Burroughs Illiac IV Fortran (Ref. 11), and Glypnir (Ref. 33). The latter language was
also designed for the Illiac IV, and while it was based on Algol, its control structures could
be trivially incorporated into Fortran. Control vectors were boolean vectors used to con-
trol vector operations. Burroughs Illiac IV Fortran used control vectors as array sub-

scripts. A * denoted a boolean vector with all elements set to true. Thus,

Real A(100), B(100)

A(*) = B(*) + A(*) (1)

added corresponding elements of arrays A and B and assigned the result to array A. On
the other hand,

do 10 i = 1, 100, 2

M (i) = .true.
M (i++) = .false. (2)

10 continue
A (1M())B(M(*)) *A(M(*))

did the same thing but only for the odd elements of A and B.

In Glypnir control vectors had 61 elements, one for each Illiac IV processor (PE), which
were used to control whether a processor was to execute or remain idte. Variables in
Glypnir could be declared to be of the pe type; this specilied that there would he a copy
of the variable on vach processor. To illustrate these ideas consider tle ?'ollo%%ing ,.o-

gram:

For example, the Cray CF:T manual suggests: "Keep subscripts simple and explicit; do riot use
parentheses in subscripts."

4

pe real xyz

(3)
for all z < 0 do x = y + 1

This program specified that x, y and z were 64 element arrays, and that for I < i <
64, y(i) + 1 was to be assigned to x(i) whenever z (i) < 0. In the for all
statement, the ith element of the control vector had the boolean value 'z (i) < 0'.

The language IVTRAN, also developed for the Illiac IV, introduced a second type of
construct: do for all (Ref. 38). This construct specified the subscripts to be used in
the vector operation. Thus,

do 10 for all i = 1, 100, 2
10 A(i) = B (i) + A (i) (4)

operated in vector form on the odd elements of A and B as was done by loop (2). The
do for all index was not limited to a single dimension. Thus,

real A(100, 50)

do 10 for all i = [1, 100] .c. [i, 50] (5)
10 A(i) = A(i) + 1

added one to each element of the 100 x 50 array A. (The .c. means Cartesian pro-
duct, and i represents a pair of integers <j,k> where j E [1,1001 and k E [1,501.) A con-
struct, similar to do for all was present in early versions of the Fortran 8X (Ref. 37)
draft standard but has been removed.

The last three vector constructs we will discuss are the ones presently adopted by the
Fortran 8X proposal. These were originally developed as part of Vectran (Refs. 42 and
43), an extension to Fortran developed at the IBM Houston Scientific Center. The basic
construct is the vector assignment statement based on triplets, three integers separated by

colons that specify beginning subscript, ending subscript, and stride. 4 Thus,

A(1:100:2) = B(1:100:2) + A(1:100:2) (6)

performs the operation and assignment on the odd elements of A and B and is equivalent
to loops (2) and (4). The triplet notation is complemented with the identify statement
used for the selection of array sections like matrix diagonals (which cannot be expressed
via triplets), and the where statement used to perform conditional vector element assign-
ments.

The adoption of Fortran 8X will make use of vector constructs more common. low-
ever, this will not rule out vectorizing compilers as will be discussed below. Both vector
constructs and vectorization will probably coexist as they do today in, for example, Alli-
ant Fortran (Ref. 5).

A second class of constructs are those used to .xpress asynchronous parallelism. In
what follows, we will discuss Fortran extensions assuming shared memory (see footnote I).
Extensions to Fortran for systems without shared memory should typically involve just a
few intrinsic routines for message passing and synchronization (see, for example, Rtef. 2).

Multita.sking constructs are the more traditional ones. Generally thcre is some kind of
fork, process, or co-bqgin staternent that causes the start of a new 4.xecution
stream that can e.xecute in parallel with the original stream. \Ve call this new 'treamn a
process. Note that the nunmber of iroce'sses started may far exceed the numn er of proes-
sors available for parallel execution. Ilowever, this only influences performance. Sinl', i:1

mrwltitasking the operating system automatically multiplexes proc.-sors and therefore
4iv,.s the illusion of the availability of an unlimited number of processors.

Stride i, the diktance between successive array elements.

% % %

i5

When multitasking is implemented in software,5 there can be a substantial amount of

overhead involved in setting up a new process because storage must be allocated, etc.

Thus, if the granularity of the task8 is small, i.e., it the amount of work to be done by the
process is small, then the overhead of allocating a new process may overwhelm the useful
work done. To get around the high overhead of process allocation, especially when the
tasks are small, microtasking is sometimes used. With microtasking, it is not necessary to
allocate a complete new process for each task. What usually happens is that the number
of processes started is equal to the number of available processors. Then each process will
be assigned one task but no multiplexing will be done. In other words, the task will
remain associated to the process until it is completed, thus saving some of the overhead
associated with process allocation. Remaining tasks are allocated to processes only when a
process becomes available by virtue of having finished a task. This assignment of tasks to
processes is done by the user (or perhaps the Fortran run-time support library).

Microtasking can cause problems, however. In the case of multitasking, each task has
a process. If any process (and thus task) is blocked, then that process is suspended and
the operating system automatically switches the processor to any other ready process. For
example, suppose we have three tasks, a, 6, and 'y, and three processes a, b, and c.
Further assume that there are only two processors and they start executing processes a
(with task a) and b (task ft.) If b gets blocked for some reason (for example, waiting for
I/O or waiting for a signal from task -'), then b is suspended which releases a processor
and allows process c to begin.

Now, suppose we are microtasking. Further suppose that there are two processors
again, that the user has asked for two processes, z and y, and that task a is assigned to
process z , task 6 is assigned to y and task "y remains unassigned. Now if 6 is blocked
waiting for a signal from "y and simultaneously a is blocked waiting for a signal from 13,
then we have a condition known as a deadlock - f8 and a cannot finish because they
need a signal from -y, but y can never signal because -y cannot start until either a or 0
have finished. Thus we have a case where, if we allocated a distinct process to each task,
no deadlock occurs, whereas if we do microtasking and the number of tasks is greater
than the number of processes, we can get a deadlock. Of course, the user (or support
library) can design a more clever microtasking system, but this will likely increase the
overhead and thus defeat the original reason for microtasking.

Microtasking systems allow only restricted types of synchronization, for example, criti-
cal regions and cascade synchronization. The reason for this restriction is to avoid
deadlock situations like the one discussed above. Assume that sections of code in different
streams may be identified with a name. The critical region mechanism guarantees that no
two processors will be inside a critical section with the same name at the same time. In
this case. we say there is mutual ezclusion. For cascade synchronization it is assumed that
if a task 7 signals another task p, then a process will be allocated to r before it is allo-
cated to g.

In an attempt to clarify these ideas, we will now discuss loop parallelism. A parallel

loop whose iterations contain no synchronization across iterations (except for critical sec-

Multitasking is almost always implemented in software. The only exception we know ,t is the l)enel-

cot IIEP (Refs. -8 and 29 where the iroplemnentation was in hardware. Titis made tiltitasking fast enoiigh
to he used to start parallel loops, and obiated the need for microtasking.

" In some contexts task is considered a synonym or process. Ilere the word task will mean an activity to
be performed by a process. This activity may be, for example, to execute a statement, a group of state-
ments, or one iteration of a loop.

Lions) is called a doall 7 loop. The defining characteristic of doal 1 loops is that their
iterations may be executed in parallel and that processors may be allocated to iterations
in any order. An example of such a loop is the following:

doall i=1,n
B (i) =A (i)
do while (B(i)**2-A(i) .gt. epsilon)

B(i)=(B(i)+A(i)/B(i))/2.O (7)
end do

end doall

Iteration i of this loop computes the square root of A (i) using Newton-Raphson, and
assigns it to B (1) (we assume that A (i) > 1).

Don 11 loops should not be synchronized in such a way that a certain number of pro-
cessors or a certain processor allocation order would be required for correct execution.

For example, the loop: 8

semaphore S(:

V (S (1)
V(T(l))
doall i~l.n

P (S M)
A(i)=A(i-l) vj (8)
V(S (i+i))

P (T (i))

V(T(ivl))

end doall

is invalid since iteration i > I cannot start execution until iteration i-i has started, and
this imposes an order on processor allocation. Thus, if only two processors were available
ait run time, ad they were allocated to iterations 2 and 3, the program would never com-
plete since iteration 2 cannot start until semaphore S (2) is incremented in iteration 1.

Parallel loops where iterations wait for synchronization signals from previous iterations
happen with some frequency. For these types of loops, the doacross construct can he
used. This construct requires that processors he allocated first to varlicr iterations. Thus,
the previous loop with the dIoas 11 keyword replaced by the doacross will be correct.

Another example of doacross is obtained by transforming the loop:

F rom FNII' Fort ran (Rlef. 13), which u sed a gener alizted version of INVT1A N, : .r t: .%,ctor
construct.

In this loop, P' and V are the well known synchronization operations. These operate on semnaphoreq.
The P~ (S) operation tosts the semaphore sand if its value is greater thtan zero, it decrements . and

proceeds. If 3 is zero, the process wait$ until a V (3) operation is executed. The v (S) operation cler-ks
whether there are processes waiting on semnaphore S; if so, it allows one of them to proceed; otherwise,
V (S) incremecnts S by one. A fundamental characteristic of these operations is (Itef. t9):

P- and V-operations are "indivisible actions"; i.e. if they, occur "eimultaneouzly- in parallel processes
they are noninteefcerng in the sense that they can be regarded as bring performed one aftee the other.

I~fl WI W~~E M ~N MU1iM FEN rMIRNMINEU~MZAEWnE R vFwmna P.3 '.ZP.3 P.3 B w v V-VVWWWSJW~7- J-V^I

do j14
do j=1. M

end do
end do

into the following parallel equivalent:

semaphore S(:, :)

doacross i=1.N
do J=1,N

if (i-ne.1) P(S(i~j))
U(i.j)=U(i-1.J)+U(ij)+u(i.1.J) +U(iJ-1) (1c)
V(S(i*l. j))

end do
end doacross

Doall loops can have synchronization instructions in their bodies as long as they do
not require a particular allocation order or a minimum number of processors. This will be
the case when the synchronization instructions are those used to crcate critical sectons.
For example, the loop:59

do i=1,N
A (K (±) A (K(i)) 1 (11)

end do

is equivalent to the loop:

semaphore S(:)

doall i1.,N

P (S (K(±M (12)
A(K(i)) A(K(i)) + 1
V (S (K(i))

end doall

Besides loop parallelism, microtasking has also been used for straight line parallelism
when the execution time of each segment is relatively short.

In Table 1, a summary of the main features of several parallel Fortran dialects is
presented. Fortran remains predominant as the supercornputer programming language.
However, there is no lack of advocates for other languages. Foremost among the con-
tenders are the functional languages; these include FP (Recf. 7), ID (Ref. 39), V'AL (Ref. 1),
SISAL (Ref. 36), and ParAlll (Ref. 27). In functional programming there is no global
state being modified by the program, but only functions inapping input values onto out-
put values. Some have claimed that these languages are more appropriate for parallel
processing due to the lack of side effects. However, as far as we know, there is today no
high-quality implementation of any of these languiages that can successfully compete %ith
Fortran in the generation of eflicient object code for supercomputers.

'Notice that in this loop, if several iterations operate on the same element of A, as happens when
several elements Of 1< Ii) are equal, the order in which the iterations are (lone is not important since each
iteration simply adds one to an element of A. However, it is important that no two iterations operatinit on
the same elemnent of A be done in parallel or the effect of some of these iterations will be lost. Trhis sequen-
tialization is taken care of by the next loop.

Languae Document Vector Assignment Vectorizing Multitasking Microtahking

1:1.c IV FORTRAN 1971 Contro Vetos NO NO NO

j(: y rn tr I Ref 33) 1972 Yes NO_____ _______ ____________

IVTRtAN lbf 3A) 1973 DO FOR ALLL YES NO0 NO
Vectrani 1575 Triplets NO NO NO
(Ref. 42) IDENTIFYtI

S~~~~~WHERE ___________________

lISP FORTRAN 197S Triplets YES NO NO0
(Ref. 12) IDENTIFY

____ 1OTRN 1978 NO NO Hardware N NO

f~Hadwr --- uppISupprtd

F%1P FRTRAN 979 NO N O Hrwr upre
I_________ ________ 13___1__1_ No Svachronizaeon

FOT1L X 1987 Triplets N/A NO NO
(Rer 37)IDENTIFY

Fujitsu FORTRAN 1985 NO YES NO N

_______ ____ 1985 NO YES NO No

*TI 19FRTA 85 NO YES NO NO

CryCFT 1980 NO YES Cray Software SupportedI
[118i Trilel i Primitives Critical Regions

Alin FORtTRAN 18 Trpes YES UNIX Hlardware Supported
(Ief. 5) TIPrimitives Cascade Synchronization

I I ___________ _____________ (Implicit)

k2quent FORtTRAN 11935 NO UNIX Software Supported
(Ref. 40) IPri tie Critical Regions

_______________________________________ -Cascade Svecrhonzanou.

EPEX,'FORTRAN 1 985 NO -Software Suipported
I~ ~ Th.3 ______ lrrer Sync hon irstios

Table 1 Characteristics of Fortran Implementations

An area not widely explored so far is that of parallel symbolic computing. We believe
that much more will he done in this area in the future. For this type of programming,
parallel versions of Lisp (Refs. 21, 2-4 and 49), and Prolog (Refs. 15 and 417)are being
developed. Also, some compiler techiniqiies to parallelize Lisp programs have been
developed (Rlefs. 25 and 26).

4 S TATE- OF-TI IE-,liT 1'ROGIRAMMING TOOLS

Restructuring and Interactive Restructurers

As we discussed above, many supercomputers include software for automatically
extracting p~arallelismn from what was originally sequential code. WeC will start this Section
by presenting several examples of parallclization. One of the simplest transformations ii
thle one that can be performed when all iterations are independent, of each other. Thec
way to determine whether the loop iterations are independent is by computing a data
dependence graph. We will not define this graph hecre; more information on depenidence
graphls and program parallclization miay be found in Rtefs. (30) and (11). Its t his paper we
will limit ourselves to a fewv examples of transformations.

All iterations in thle following loop are independent:

tw

do 1=1,n
if (A(i) .gt. 0) then

B (i) C C(i) + D (i) (13)
E (i) F E(i)

end if
end do

and therefore it can be transformed to:

where (A(1:n) .gt. 0)
B(l:n) =C(1:n) + D(1:n)
E(l:n) = F(l:n) (14)

end where

or to:

doall i=in
if (A(i) .gt. 0) then

B3(i) = C(i) + D (i)
E (i) F B(i) (15)

end if
end doali

or to:

doall i1l,n.K
.1i = min(i-K-1,n)

where (A(i:m) qgt. 0)
B(i:m) C(i:m) + D(i:m)
E(i:M) =F(i:M) (16)

end where
end doall

Parallelizing loops is possible even when loop iterations are not independent -paral-

lelizing compilrs could transform do loops into doacross loops by inserting the
appropriate synchronization instructions. For example, a parallelizing compiler could
transform do loop (9) to doacross loop (10).

Sometimes secondary transformations are necessary before a loop can be parallelized.
For example, the loop:

do i=l.n
A = 5B(i) + C (i)
D(i) =A ,1 (17)

end do

cannot be parallelized because all iterations use the variable A to store intermediate
values.

A transformation called scalar expansionz will make the iterations of the previous loup
independent by chaniging A into an array:

do ji~stn
AX(i) 13(i) - (i)

!)) AX (1) 1 i
"rd do
A = AX(n)

Another important secondary transformation is loop :,zerchanqsn. Th'is transformna-
tiori makes it possible to inap either of the following two doubly-nested loops into lie
ot her:

INU

10

do i1l.n
(1o J=1.n

end do
end do

do jrl.n

do i1.n

A~~)=A(i~j-1) 1 (20)

end do

end do

If the input loop is the first one above, and the target machine is a vector machine, the
compiler will first transform the first loop into the second and then vectorize the inner
loop.

On the other hand, if the input loop is the second one and the target machine is a mul-
tiprocessor, the compiler will first transform the second loop into the first loop and then
transform the outer loop into a doal 11 loop. This is done to pay only once the overhead
involved in starting the doal11 loop.

The final secondary transformation we will discuss is blocking. This transformation is
used mainly for memory management. For example, assume a vector machine where all
arithmetic machine instructions are register-to-register, and that the vector registers are
32 words long. The loop:

do i=1.n
A (i) = B (i) -C (i) (1

end do

can be transformed into:

do _!=,n,2

do j-irin(i-31,n)
A (j) = B (j) , C (j) (2

end do
end do

The inner loop can be vectorized as follows:

do i~l,n,32

ma = main(i-31,n)

A (i: m) =B (i: m) C (i: m) (23)

end do

Trhe vector operations can now he mappedi into vector register instructions as shown
next (vrl, vr-2 and vr3 arc 32-elemient vector registers)

do i 1 1, 223.

vr2 C :,i

vr3 / rl - vr2 (4

A(i:rn) = irA
end do

Let us now discuss a more cornplex example. Assumne a multiprocessor with a cache
memory on each processor. Further assume that the cache (and thus the metmory) is
divided into blocks of K words each, and that dlata is only exchanged hetween mnermory
and cache as whole blocks. Assumne also that matrix columns are seqjuences of blocks (i.e.,

11

matrices are stored in column-major order and columns are much bigger than blocks).

Consider now the loop:

do i=10N
do j=I,N

B(Ji) = A(ioJ) + 1 (25)
end do

end do

A naive compiler might transform the outer loop into a doall without any other
transformations, causing (1+1/K) block transfers between memory and caches for each
assignment executed.

To improve this situation, the compiler could block both loops into groups of K itera-
tions. This would have the effect of transposing the matrix by KxK submatrices or
blocks, thus the name loop blocking. After blocking and interchanging loops, we end up
with the loop:

do io=l,N,K
do jo=l,NK

do i=ioio+K-1
do j=Jo,Jo+K-1

B(j~i) =A(1.J) +1 (26)
end do

end do
end do

end do

If the outer loop is now transformed into a doall loop, the number of cache block
transfers decreases to 2/K, a clear improvement over the naive approach when K is not
small.

To conclude the work on this loop we need to block once more for vector registers, vec-
torize the innermost loops, and map into vector register instructions: 10

doall io=l,N,K
do jo=l,N.K

do i=ioio-K-1
do j=jo,Jo+K-1,32

m=min(j+31, n)
vrl = A(i. j:m)

vr2 = vrl + 1 (27)
B(j:m. i) vr2

end do

end do
end do

end do

Even though for presentation purposes the previous examples were shown as

source-to-source trans formations, parallelization is most often performed inside the ,orn-
piler, and usually the programmer is informed of the transformations only via annotated
program listings. The annotations, when used in conjunction with information on execu-
tion time of program segments (known as a program profile), identify those segments of

Some transformations like vectorization actually make the code easier to read. On the other hand,

loop blocking is an example of a transformation that the user would prefer not to see - it certainly does not
make the code any easier to read even though it makes it more elficient.

12

code for which the programmer, in his quest for speedup, should rewrite or expand with
parallelization directives to the compiler. Two examples from Alliant Fortran are the
commands cvd$q cncail and cvd$g nosync. The first one allows loops to be paral-
lelized in the presence of subroutine calls."1 The second command allows parallelization of
loops even if several iterations assign values to the same memory location.

The , xistence of these annotations indicates that parallelization is different from tradi-
tional compiler optimizations. Thus, a compiler performs register allocation and usually
common subexpression elimination, but it never informs the user on how successful it was
in applying these transformations. The major difference between regular optimizing com-
piiers and vectorizing/parallelizing compilers is that the benefits of vectorization are
potentially higher, and either program rewriting or parallelization commands may be
necessary to obtain efficient parallelism. An example of such a situation is provided by
the transformation that takes a Fortran do loop and transforms it into a vector assign-
ment statement. One piece of information required for this transformation is an analysis
of the array subscripts inside of the do loop. This analysis can be performed when the
subscripts are linear functions of the loop indices. When this analysis cannot be per-
formed, vectorization is precluded. For example, the loop:

do i=1 100

A(K(i))=A(K(i)) + 1.1 (28)
end do

cannot be vectorized t 2 if nothing is known about vector K. One way to get this informa-
tion is via assertions. In this case, the compiler will vectorize only if the programmer
asserts that K(i) * K(j) whenever i * J.

Depending on the target machine, the annotations provided to the programmer may
vary in complexity. In some cases it may be appropriate to show the programmer a
source code version of the parallelized program. This approach is followed by those paral-
lelizers that perform source-to-source translation such as Parafrase (Ref. 31), IC(AP (Refs.
17 and 18), VAST (Ref. 9), and PFC (Ref. 3). The output of these restructurers includes
some form of parallel constructs. Since no standards exist for such constructs, there is no
uniformity even though some form of vector extensions from Fortran 8x are frequently
adopted.

The input parallelization commands can also be replaced by parallel constructs. Thus,
instead of specifying that a loop may be vectorized, the programmer may write a vector
assignment statement. However, portability suffers when parallel extensions are used
since there is no standard for those extensions.

In the past, vectorizing compilers have been considered only in the context of dusty
decks 3. We believe that restructurers (source-to-source translators) are also useful in

" When compilers are faced with subroutine calls inside of loops, they usually assume the worst - that

the loop cannot be vectorized or multipricessed. Recent work (lRefs. 10, 14, 28, and 52) suegests that some
interprocedural analysis can be dune to pernit transformations in some cases. iBut user aertion, are still

going to be important.
B2 fy vectorizing we mean transforming loop (2R) into the single statement

A (K (1: CO)) -- A (E (1: 1 O)) - 1-.1

Ve should point out that even if nothing is known about < we could transform (2S) into a sequence if -ec.
tot statements, where the first ones do solne sort of runtime dependence testing.

" The term dusty deck refers to old (lusty) programs that need to be compiled without human rewrit.

ing, either because the cost of manpower needed for the rewriting is prohibitive, or becaise nobody under-
stands the programs any more. Sone people feel that the only use for sophisticated restructuring coirilers
is for processing dusty decks - that new languages allowing the explicit expression of parallelismr ssill obvi-
ate the need fir these compilers. One look at the results of loop blocking above should convince anyone that
even if programmers can use explicit parallelism, there are some iptihizations better left tu the coulhrs.

- - wyq %5

13

other contexts. Specifically, a restructurer could be used to free the programmer (at least
to some extent) from performance considerations and let him concentrate on correctness.
We could, therefore, conceive of programming parallel computers as a two-step process.
First, a program would be written and tested. Once the programmer was convinced of its
correctness, the program would be transformed into an efficient version through
automatic means. Clearly, things will not always work out in this way since achieving
efficiency might involve changing the program in ways beyond the capability of current
restructurers. However, we believe that this two-step process could often be applied.

In the process of restructuring, interaction with the user may be needed due to one of
the following reasons:

* A certain transformation is valid only if the user supplies an assertion. The vectori-
zation of loop (28) is an example of this situation.

" The restructurer needs information from the user to decide how to transform a con-
struct. For example, a vector assignment where only some of the array elements are
to be assigned may be transformed into a sequence of vector operations including
gather/scatter operations or into vector operations that mask some of the assign-
ments. Knowing the density of the array elements to be assigned is necessary in this
case (See Ref. 20).

a The restructurer may not have a model of the target machine, and therefore it will
be unable to decide by itself what transformations to apply even if the program
behavior is known at compile time.

Most of the restructurers today are batch restructurers. Some of them interact with
the programmer (also in batch mode) by requesting information in the listing and accept-
ing comment cards with information supplied by the programmer. However, interactive
restructurers have clear advantages, and are beginning to emerge.

Debuggers

Much has been done in the area of symbolic debuggers over the last ten years. Many
user friendly tools such as Berkeley Unix's dbx (Ref. 53) and Apollo's debug (Ref. 6)
have done an excellent job of providing an environment that allows controlled probing
and analysis of application programs. Debuggers of this type typically support a set of
tools that can be used to determine the state of an object program at any point in its exe-
cution. These tools include the facilities for setting breakpoints, monitoring, examining,
and tracing variables (which can be symbolically referenced), and single-stepping the tar-
get program. This set of functions is usually sufficient to allow the user to determine the
unique state of a single processor application within the context of the original source pro-
gram. Supercomputer applications, however, present a more difficult problem to the
debugging programmer. These programs use vector and/or multitasking parallelism in
order to achieve their high computation speed. Parallelism in programs introduces new
wrinkles that make it difficult to extend serial debugging tools to the parallel domain.
Additionally, as mentioned earlier, the optimizing compiler tools that usually accompany
the supercomputer hardware do extensive restructuring of the original source proeran,
widening the gap between the user's perception of the application and the run-timle
representation.

Vector parallelism by itself is not inherently complicated. Languages that include 'ec-
tor constructs exist today, and compilers for these languages can map high l,.vel vector
constructs directly into vector instructions for the pipelined vector architectures. Pro-
grams that explicitly use only vector parallelism can he analyzed with traditional
debuggers having minimal extensions, since these programs still execute through a single
stream of statements at one time. The problem arises when serial programs are passed
through vectorizing restructurers. These optimizers can significantly change the

14

appearance of the original source code, making it difficult for a user to reconcile the edit-
time and run-time states of his program. For this reason, the reporting of run-time errors
may not make sense when returned to the user, forcing him to recompile his program
without optimization and rerun the application in order to help isolate problems.

Multitasking applications present a more serious challenge to debugger technology (as
well as ideology). In the parallel execution domain, the concept of a breakpoint is not
clear. In the parallel environment the notions of global and local effects must be con-
sidered. A local effect is one that is administered to a small group (possibly one) of pro-
cessors, whereas a global effect is one that is administered to all processors related to the
execution of a particular program. A breakpoint applied to one portion of code executing
on one processor may or may not be expected to halt all other processors executing the
same code. 4 Furthermore, should a global effect for that breakpoint be desirable, the
question of granularity must be resolved, namely, how quickly after the breakpoint is
reached can all of the other processors be stopped? A similar problem exists with respect
to the variable name space. Tracing and examining specific variable names becomes more
tedious when several processors are executing, each with its own copy of the same routine
(and hence the same list of local variables). Tracing of such variables must be qualified
with additional information that identifies the processor or group of processors of interest.

The most challenging aspect of parallel debugging is the timing conflicts introduced by
interacting, independently running processors. The series of states through which a serial
program passes is not time dependent and is therefore repeatable, providing the opportun-
ity for an unlimited number of reruns in order to localize run-time anomalies. The set of
states through which a parallel program passes is dynamic and very sensitive to the speed
at which each processor is progressing. For this reason, program errors may surface infre-
quently. Furthermore, these timing or synchronization errors might be completely
masked when software debugging instrumentation is inserted into the code (thus changing
the run-time image).

Another debugging problem is the nature of supercomputer application programs.
These programs tend to manipulate large quantities of single- and double-precision
floating-point numbers to perform their tasks. Finding errors in output listings from
lengthy computations can be user-intensive and time-consuming. New methods of render-
ing this information in the form of graphic images must be used to present large volumes
of information in a concise manner.

Many solutions to the parallel debugging problem are starting to appear in industry
and academia. One such solution is Pdbx developed by Sequent Computer Systems,
Incorporated (Ref. 46). Pdbx is an enhanced version of dbx that supports debugging of
multiple process applications on Sequent's shared memory multiprocessor machine. In
addition to the functionality of dbx, Pdbx supports the debuggins of multiple Unix
processes. Supported are such features as breakpoints for one or more processes, indepen-
dent examination and tracing of individual processes, and the use of multiple terminals or
"windows" for monitoring multiple processes. While Pdbx provides no facilities to con-
trol the repeatability of a parallel program, it does extend the functions of a traditional
serial symbolic debugger to provide some tools for probing the execution of parallel pro-
grains.

Instant Replay,"r developed at the University of Rochester, is another debuing
environment targeted at helping users debug parallel programs on the 111N |lutterily
(Ref. 3.1). Instant Replay attacks the repeatability problem by regulating and recording
access to shared data objects. Bly introducing some small run-time overhead (variable,

z CSRD is currently researching the question of whether global effects are necessary or desirable when
debugging parallel programs.

15

but as low as one to ten percent in some applications), Instant Replay attaches aging
information to all shared objects and records revision numbers as these objects are
updated and disseminated. In addition to recording this revision information, the run-
time system has the ability to "replay" the application while insuring the same access
sequences to shared objects. This gives the programmer the capability to perform the
cyclic rerunning necessary to do incremental debugging on a parallel machine.

The future will probably bring developments in several areas in response to the
increased challenge of constructing and debugging parallel programs. Hardware enhance-
ments represent one necessity. New supercomputer designs will continue to incorporate
an increasing amount of instrumentation to support run-time monitoring and control.
This special-purpose hardware is necessary to monitor the execution history of parallel
programs in a non-intrusive way. Additionally, low-level hardware support can be used to
effect a parallel breakpoint mechanism that cannot be cleanly achieved in software.

Other tools to be expected in the future include pre-compilation and post-run analysis
tools. Designers of parallel software will be able to use these tools to analyze interproces-
sor communication and cite coding sequences that can be potentially time dependent.
Such an analysis system is being developed at the University of Illinois at Urbana-
Champaign (Ref. 4). The system consists of a diagnostic compiler that can warn the user
of source code sequences that contain guaranteed race conditions as well as potential race
conditions that cannot be determined with certainty at compile time. To help ascertain
the behavior of indeterminate race conditions, the compiler will automatically insert the
appropriate instrumentation into the object code to investigate data reference behavior.
Trace data generated by this instrumentation can then be inspected (both manually and
automatically) to help determine the status of potential timing hazards recognized before
execution. Systems such as this serve not only to assist users in locating nondeterministic
code sequences in parallel applications, but also to help users improve program perfor-
mance. By allowing the compiler to instrument an application in areas of uncertain race
conditions, the user can potentially learn of assertions lie could add to his code that would
eliminate conservative assumptions that might normally be made by the restructuring
compiler.

Improvements in development environments will also help to ease the burden of using

supercomputers effectively. Knowledge-based systems could play a major role in the
implementation of an error-free program. By guiding the user through the selection from
a library of optimized numerical kernels, expert systems can aid the user in locating reus-
able, bug-free code. This is one way the environment can help to reduce the potential
number of software errors during development.

Another way is through the use of new knowledge-based debugging tools. An intelli-
gent parallel debugging system could work in conjunction with the system compilers and
run-time monitoring system to ascertain the required information for a processor-time
graph (Figure 1). Once an error is recognized in the program, the programmer could
invoke a debugging expert that would ask a series of questions relating to the error to
help the user isolate the problem. In the case of an intermittent synchronization error.
the expert system could reference the processor-time graph and supply a mapping of ,.xe-
,ution time to source code lines to aid the user in looking for programming 4,rrors. In the
case of F'igure 1, the pro,,rarnmer would be directed to ruview the code t hat xccu's
between times t3 to t, and times tl to t, .ince maximum parallelism occurs during t lxse
'1mnes and is therefore likely to be the cause of intermittent synchron iation prohletns.

Finally, continuing improvements in restructuring compiler technology will reduce' the
pressure on individuals to lind and implement parallelism in application prorains. While
parallel programming must be encouraged in order to build applications that achieve the
highest levels of performance, automatic optimization systems will allow more casual un,'rs
to develop and debug an application in a serial, reproducible environment - leaving the

.11111!|1'ILW 1 A

16

number
of

processors

ti t. t3 t4 ts 't

time

Figure 1 Sample processor-time graph

correct parallelization transformations to the compiler.

Performance Evaluation

Performance evaluation on any machine has traditionally been a difflcult atsd nwsch
neglected task. Supercomputers worsen the problem with a complicated arsenal of
hardware and software additions that require new levels of understanding by the user.
Many of the architectural features used by supercomputer designers to gain computa-
tional speed are the same features that make program performance dillicult to trnck.
Pipelined vector arithmetic units, shared caches, interconnection networks. and shared
memories are just a few aspects of supercomputer systems that can he responsible for a
wide variance of execution times for a particular application, depending on their opera-
tional efficiency. These architectural components are complex and interrelated, resulting
in a run-time environment that is difficult to trace and analyze.

State-of-the-art performance evaluation tools for existing single-processor machires are
helpful when extended into the parallel domain, hut remain too simplistic to do0 :a con-
plete job. These utilities help proqramimers understand the ruin-time re!:ources consuined
by an application at a high level, without providing insight into the machine level inturac-
tion that might hie involved. The Unix operating system supports performanceanvs
for progtrams written in Fortran, C, atnd Pascal throiish a set of protiling tooki and sY~,-[m
timer calls. One, of the profiling tools is the gprof (I tfs. 53. 22, 23) utility wkhich :
users to accumulate rall couints and (ccutioO timecs on a subroutine bas by !.rrp"e.
prog~ram Counter of the running application at reg-til:Lr intervals. Thiis information A 01-

l1cted t h rog h t he uise of special run-ii-tnte code inser ted in to thle object moodutle on do old d
by the user ait com ipile t imre. The p rofli in g teechni Iqute is ve'ry use ful ftor ;,olat rg spve-i:!'

routines that account for major port ions of an application's exectutioni time. kilt does 4 ltIV

for helping the ier to improve etlieiency anod titili/atutn onctet the trouble areas have :t

located.

F'or example, the following code frngnient:

17

do 10 1 = 1. 100
do 10 J = 1. ICO

do 10 K = 1. 100
A(I. J, K) = 0 (29)

end do
end do

end do

is an example of a loop that will generate an excessive number of page faults when exe-
cuted in a virtual memory system. The reason for the performance problem is that the
array is referenced in the "wrong" order. With Fortran arrays, element A(1, 1, 1) is
adjacent in memory to element A(2, 1,1) , not A(1, 1.2) . For that reason. each
write to A (I. J, K) may require a disk access instead of a simple memory write. In this
example, knowing that the routine which contains this loop is responsible for a significant
percentage of the execution time for a particular application is useful but not sufficient.

Inexperienced programmers who have not seen this effect may be unable to correct perfor-
mance deficiencies of this sort. The analysis given by the run-time system should include
more detailed information about the nature of the delays incurred in the designated rou-
tine along with suggestions about whether the observed performance is "reasonable."

While the above example represents a simple problem that can also be seen in unipro-
cessors, other examples for parallel machines can be more subtle. Consider, for example,
an application that applies a set of n processors using a shared cache to do a computation
on n individual, independent arrays. Depending on the size of the arrays, the access pat- %

tern of each processor, and the cache algorithm used by the memory system, the speedup

seen for this application could be anywhere from n down to numbers less than I. Speed-

ups of less than 1 can result from each of the n processors overwriting cache blocks that
have just been loaded by one of the other piocessors. If perfectly timed, each processor's
memory reference would result in a cache miss, thus nullifying the usefulness of the

cache.18 While the situation described is a pathological case, some interference effects do
exist in the caching system that can impact performance. Additionally, other aspects of
the machine operation such as contention in the interconnection network also impact the
program's performance. Complete analysis of the performance of applications in the pres-
ence of these effects requires the ability to capture this information.

As was the case with debugging, restructuring compilers complicate the effort of tuning
supercomputer programs. Again, the user is faced with the problem of reconciling run-
time trace and performance information with source code listings that do not completely
match. More recent optimization techniques such as subroutine expansion (Refs. 28, 35)
pose some of the more difficult problems, since many performance tools tend to collect
data at the subroutine level and this transformation erases that modularity. Subroutine
expansion enlarges the granularity of the monitored program, giving the user less detailed
information about the nature of the run-time performance.

Another aspect of computing in general (and supercomputing in particular) that is
troublesome for performance evaluation is multiprogramming. Since investments in
supercomputer hardware can be quite large, there is a strong incentive to achieve max-
imum utilization of available machine time. Utilization of supercomputers is usually
enhanced through muitiprogramming. This causes problems for the performance analysis

SL Speedup is T, / Tn, where T 1 is the time required to execute the application serially and T n ;s the
time required to execute the application using n procesors. Speedups of less than I indicate that the appli-

cation runs slower in the parallel environment than it would have serially.

* In fact, bince the caching mechanism introduces some overhead, the resulting application might run
glower than it would with a single processor system with no cache.

1 -1
5 ,*\ '

13

system by complicating the hardware and software instrumentation. Multiprogrammed
systems require enhanced performance analysis instrumentation in order to do the neces-
sary accounting for multiple jobs. For job swaps and operating system calls, more con-
text information must be saved to insure integrity of individual job accounting.

Hardware and software probes must be turned off and on during context switches instead
of running continuously as in a monoprogrammed environment.

Multiprogramming also causes problems for the user attempting to improve an
application's execution performance. Applications running in monoprogrammed environ-
ments are easily evaluated by examining the apparent execution time of execution or
"wall clock" time. Users optimizing applications in such an environment need only make
changes and execute again, comparing the new wall clock time to that of previous runs.
While wall clock time is a useful metric to gauge the performance of applications in these
monoprogrammed environments, it is not useful in understanding the performance of an
application in a multiprogrammed system. System loading, scheduling algorithms,
resource availability, and other factors uncontrollable by the user all contribute to the
apparent execution time of an application. The user will find that two successive runs of
an identical program could vary greatly.

Future programming environments will include many enhancements to the
hardware/software configurations that are offered by supercomputer vendors if applica-
tion programs are to perform efficiently on their machines. First, hardware enhancements
will be necessary to achieve many of the performance evaluation goals currently
envisioned. Some manufacturers have already realized the need for including such spe-
cialized hardware as part of their standard machine configurations. Cray Research. Inc.
manufactures a machine called the X-NMP which includes a hardware performance monitor
that comprises a set of counters that can monitor certain hardware-related events (Ref.
32). These counters track events such as floating-point operations, instruction fetches,

1/O and CPU memory referencs, and vector operations on a per-CPU basis.17 As super-
computing experience accumulates, the heightened awareness of the need for performance
information will drive other manufacturers to provide a basic set of hardware instrumen-
tation that can be used for performance and correctness tracking.

Perhaps the greatest potential for improvement in the area of performance evaluation
is that of presentation techniques. While data capturing facilities in system hardware and
software are evolving, innovations in the area of data rendering are slow in coming. The
volume of run-time trace data that could be of interest in a parallel execution environ-

ment is too massive to represent in raw f6rm. Of particular interest are areas of interac-
tion between multiple processors that are synchronizing in some way. A detailed analysis
of this environment could require an extensive log of time-stamped accesses. Such a log is
usually not practical to review, possibly consisting of several hundreds of pages of entrics.
More interesting techiniq'ies involving concise graphic representations must be devioped

to make this information more usable.

New innovations in the area of pre-compilation and pre-execution performance analysis
"ools can also be v-xpected. These tools might take several forms to aid 'he 1er ae t

,difrfrent times during the program developinint cycle. One such tool miqht be a
anaiyzer that could evaluate the use of system library routines anid prsent t titnalts of

'he run-time performance of ain application based on p:ist execution stati-tics of the

library kernels and the extent of their usage. Othwr tools miqht look at g1nerated a:sem-

bil code and make predictions about execution sio ed based oil tile density of vector comn-
putation opcodes versus that of scalar, control, aWil other "';le" oprodes.

' The Cray X-MP is available in multiple CPU confiKurations.

1 iqu

19

As with debugging, the problem of performance evaluation can lessen as compiler tech-
nology continues to improve. The problem of tuning application programs should gradu- 7
ally become a higher level concern than it is today. Compilers will continue to find new 'Y
ways of exploiting parallelism at low levels, while applications programmers are freed to
concentrate on higher level algorithm design issues. Knowledge gained by the perfor-
mance analysts today will be incorporated in tomorrow's compilers. As the effects of
caching and memory interconnection networks are better understood, heuristics for better
transformations can be built into optimizing compilers. These compilers should also be
adaptive - able to generate efficient code for many different vendors' machines in a par-
ticular class and dependent only on a list of important parameters such as cache size. vec-
tor register lengths, number of processors and others. Additionally, these compilers might
be able to use data collected by performance monitoring systems in order to further refine
compile-time optimizations. The current static decisions about optimizations might be
dynamic in the future - based on information about the eventual run-time environment
(such as system loading). In this environment, the compiler system will migrate toward
an expert system model, soliciting information from the user and statistics databases in
order to provide optimal execution for a wide range of applications.

Integration

With the number and complexity of software development tools increasing, the need
for an integrated environment is becoming increasingly necessary in the high speed com-
puting arena. A graphics-based scientific programming environment with an integrated
software productivity tool kit has many things to offer to the supercomputer programmer
that cannot easily be offered by the conventional software development tools being used
today.

First, the programming environment should provide a consistent user interface para-

digm across the entire range of supported tools. Casual or infrequent users are not likely
to spend extensive sessions with user manuals learning the idiosyncrasies of several tools.
Rather, users will become frustrated with the system's complexity and will resort to func-
tioning at the easiest possible level, thereby minimizing his effort (and possibly his
efficiency and productivity).

A well-structured environment should consist of a single interface style through which

all packages are accessed. The screen images seen by the user during program editing
should be the same as the images seen during debugging and program optimization. Once
the user is fluent with one aspect of the system, several functions of the system should be
usable with minimal additional effort. The efficacy of such an approach can be seen by
the ease of use and popularity of extant integrated window-based systems such as the
Apple Macintosh.

Additionally, the user interface should support a graphical as well as a textual
representation for programs. Indeed, source text will always be viewable and editable by
the programmer, but higher level abstractions such :s static subroutine call -raphs and
task/process graphs are useful in understanding overall program structure more readily.
Just as graphic images can be used to render a concise representation of large volumes of
output data, graphic ;pro,4ram structures can be a useful tool for the programmers wkhil t
to elide much of, the source-level irnplenmentation details in favor of perusing a ltre
representation of an application's architecture.

The Center for Slipercomnputing jtesearch and l)evelopment at the University of Illinois

is currently developing an environment that supports such a programming model. l'hLe
environment, named Faust, is targeted at integrating several software development tools

through a common window-based interface. For example, a user wanting to develop an
application at tie source-code level may bring up a textual window and enter Fortran
source using a conventional text editor (Figure 2). If the user would rather see the

L iil Sim I I III ,

210

PROGRA.\I MAIN
CALL AI
DO I1 1, 30

CALL 13B
EIND DO
CALL C

Figure 2 Simple application being examined at the source code level

MAIN

Figure 3 Samne application at the subroutine interconnect level

application at a hi,,her level, an "inzoomn function can be invoked to bring iij !ICe
corresponding subroutine intercon nection g;raphi tl'inire 3). Faust can automatically
create the subroutine call graph (if it does not already' exist) from source code; however, ii
desired, the user may do the original editing at the graphic level of abstraction and assori-
ate source code for each 'block' :Is the implementation proceeds. l'amst also supports
other levels of detail including process graiphs that represent paralle-lism as well zus data-
dependence graphs for aiding interactive restructo ring.

Th~e concept of detail iijngI~ is the sante rationale i-~ed to justifyih-ellauu..
l'roranners usually want to cono-viltrate on a solution to an application problem in nioore
abstract termns than is possible throuEgh thle use of ;ussermbly languare. For this reasoli.
hig~h-level languages create the lagaenevironmnit" I which lie prograinnier %orks.
H id in g the details. Ihowever, isriot alw ays desirable. lII somne opera tions, thle p rog rain i r
May require the detailed informnation to correct Ilelicienicies4 in hIis AppJlicatioli epciil
Nvinth rvspect to debugging and pe~rformnce illlproVIlilt lt). ToLu ipport tis faci'ltv,

21

several Unix-based compilers often include an option that allow a user to see the assembly
code generated from his source files. This gives the user the ability to work at the higher
level abstraction during normal use as well as to analyze machine level details when neces-
sary. The superenvironment builds on this idea, providing more levels of abstraction that
are completely controllable by the user. While this issue of multiple levels of detail is not
specific to the programming environments of supercomputers, the additional complexity
of multiple streams of execution makes the abstraction even more desirable.

The scientific programmer's environment needs to be flexible in a number of different
ways. First, the environment must support users of varying levels of expertise.
Engineering-oriented users are likely to want to concentrate on solving applications prob-
lems - not performance problems. The environment should support this group of users
with an array of automatic restructuring tools and electronic experts that can shoulder
most of the burden of achieving execution efficiency while the user focuses on his algo-
rithms and application. Numerical analysts and systems programmers, however, will
expect the environment to provide more fundamental tools for scrutinizing the more sub-
tle aspects of machine operation in order to retrieve the low level data they need to fine
tune system libraries. Somehow the environment must support both ends of the spectrum
in a unified manner.

Second, the programming environment should be able to support multiple types of
machines. Many styles of new machines will be developed over time and the life of an
application program will succeed several machine architectures. Additionally, many users
support applications on multiple machines at the same time, frequently moving applica-
tions between them as required. For these reasons, the environment should be adaptable
enough to support a production application on several vendors' architectures without
requiring significant effort from the user. This can be achieved by designing an extensible
interface through which remote utilities (such as vendor-specific optimizing compilers) can
be attached while maintaining the same dialogue and appearance to the user. The local
utilities should also be designed to work according to heuristics developed for general
architectural characteristics rather than machine specific idiosyncrasies (although, as men-
tioned above, numerical analysts will want to take advantage of machine-specific
phenomena when building heavily used kernels). For example, a restructuring compiler
that does transformations for a generic vector processor with vector register length n can
be useful for a number of different machines just by supplying the appropriate n for the
machine of interest.

Finally, the environment should support a wide variety of language domains. While
Fortran is certainly necessary, languages such as C, Ada, Pascal, Val, and others must
also be considered. Future developments are also likely to include languages of a more
symbolic nature. Interactive environments built on systems such as Maxima (Ref. 44) and
Reduce (Ref. 51) could provide a very useful function, offering a higher level of communi-
cations to scientific users who would prefer to express problems in a representation that
more closely resembles mathematical notation than procedural source code. Ultimately,
programming environments will evolve to transcend the mundane details of traditional
programming, allowing scientists and engineers to converse in a language more familiar to
them while the environment fills the gap between the symbolic representations and the
encoding required by the underlying hardware.

The scientific programming environment is well suited to the workstation hardware
offered by manufacturers such as Sun, DEC, Apollo and others. These nodes consist of
bitmapped graphiascreens attached to a 32-bit microprocessor running Unix. While run-
ning the environment's "font end" software on another host (the workstation) poses
some technical problems with respect to implementation of control and communication
links, this configuration offers the ability to run screen intensive user interaction support
functions locally which provides several benefits. First, the user need not use expensive

22

supercomputer hardware to service functions such as text editing and graphics manage-
ment. Second, keeping much of the functionality within the workstation helps promote
the desired goal of supercomputer vendor independence. This common front end also pro-
motes familiarity across systems through the enforcement of a common user interface
between the application programmer and the supercomputer. Finally, having local intelli-
gence in the workstation gives the user more consistent response from day to day.

5 ACKNOWLEDGEMENT

This work was supported in part by the National Science Foundation under Grant
Nos. US NSF DCR84-06916 and US NSF DCR84-10110, the US Department of Energy
under Grant No. US DOE DE-FG02-85ER25001, the United States Air Force under
Grant AFOSR-85-0211, and by a donation from the IBM Corporation.

6 REFERENCES

1. Ackerman, W. B., and Dennis, J. B., "VAL: A Value-Oriented Algorithmic
Language," Report No. TR-218, June 1979, Laboratory for Computer Science,
M.I.T., Cambridge, MA.

2. Ahuja, S., Carriero, N., and Gelerater, D., "Linda and Friends," Computer, Vol. 19,
No. 8, Aug. 1986, pp. 26-34.

3. Allen, J. R., and Kennedy, K., "PFC: A Program to Convert Fortran to Parallel
Form," Report No. MASC-TR82-6, Mar.1982, Rice University, Houston, TX.

4. Allen, T., and Padua, D., "Debugging Fortran on a Shared Memory Machine," to
appear in Proceedings of the 1987 IEEE International Conference on Parallel Pro-
cessing, 1987.

5. Alliant Computer Systems Corporation, "FX/FORTRAN Language Manual," No.
302-00002-B, Jan. 1986, Alliant Computer Systems Corporation, Littleton, M.A.

6. Apollo Computer, Incorporated, "DOMAIN Language Level Debugger Reference,"
No. 001525, 1985, Apollo Computer, Incorporated, Chelmsford, MA.

7. Backus, J., "Can Programming be Liberated from the von Neumann Style? A Func-
tional Style and Its A.1gebra of Programs," Communications of the ACM, Vol. 21,

No. 8, Aug. 1978, pp. 613-641.

8. Booth, M., and Misegades, K., "Microtasking: A New Way to Harness Multiproces-
sors," Cray Channels, Vol. 8, No. 2, Summer 1986, pp. 24-27.

9. Brode, B., "Precompilation of Fortran Programs to Facilitate Array Processing,"
Computer, Vol. 14, No. 9, Sept. 1981, pp. .16-51.

10. Burke, M., and Cytron, R., "Interprocedural Dependence Analysis and Paralleliza-
tion," Proceedings of the AC.M SIGPLAN 86 Symposium on Compiler Construction, 106

SIGPLAN No. 21, Vol. 7, July 1986, pp. 162-175.

11. Burroughs Corporation, "!!liac Fortran Specification," No. 66106, Dec. 1970, %
Burroughs Corporation, Paoli, PA.

12. Burroughs Corporation, "Burroughs Scientific Processor (BSP) Vector Fortran Prel-
iminary Specification," 1975, Burroughs Corporation, Paoli, PA.

13. Burroughs Corporation, "Numerical Aerodynamic Simulation Facility Feasibility
Study," Mar. 1979, Burroughs Corporation, Paoli, PA.

1.1. Callahan, D., Cooper, K. D., Kennedy, K., and Torczon, L., "Interprocedurai

III J ll,

23

Constant Propagation," Proceedings of the ACM SIGPLAN 86 Symposium on Com-
piler Construction, SIGPLAN No. 21, Vol. 7, July 1986, pp. 152-161.

15. Clark, K. L., and Gregory, S., "Parlog: Parallel Programming in Logic," ACM Tran-
sactions on Programming Languages and Systems, Vol. 8, No. 1, Jan. 1986, pp. 1-49.

16. Cray Research, Inc., "Cray X-MP Multitasking Programmer's Reference Manual,"
Publication No. SN-0222, Oct. 1986, Cray Research, Inc., Mendota Heights, MN.

17. Davies, J., Huson, C., Macke, T., Leasure, B., and Wolfe, M., "The KAP/S-1: An
Advanced Source-to-Source Vectorizer for the S-1 Mark Ila Supercomputer,"
Proceedings of the 1986 IEEE International Conference on Parallel Processing, 1986,
pp. 833-835.

18. Davies, J., Huson, C., Macke, T., Leasure, B., and Wolfe, M., "The KAP/205: An
Advanced Source-to-Source Vectorizer for the Cyber 205 Supercomputer," Proceed-
ings of the 1986 IEEE International Conference on Parallel Processing, 1986, pp.
827-832.

19. Dijkstra, E. W., "The Structure of the T.H.E. Multiprogramming System," Com-
munications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

20. Fujitsu Limited, "Amdahl VP/Application Development System Fortran 77/VP
User's Guide," Publication No. MC-142006, July 1986, Amdahl Corporation, Sun-
nyvale, CA.

21. Gabriel, R. P., and McCarthy, J., "Queue-Based Multiprocessor Lisp," Proceedings
of the 1984 ACM Conference on Lisp and Functional Programming, Aug. 1984, pp.
25-44.

22. Graham, S. L., Kessler, P. B., and McKusik, M. K., "Oprof: a Call Graph Execution
Profiler," Proceedings of the ACM SIGPLAN 1982 Symposium on Compiler Con-
struction, Vol. 17, No. 6, June, 1982, pp. 120-126.

23. Graham, S. L., Kessler, P. B., and McKusik, M. K., "An Execution Profiler for
Modular Programs," Software - Practice and Experience, Vol. 13, 1983, pp. 671-685.

24. Ilalstead, R. H., "Multilisp: A Language for Concurrent Symbolic Computation,"
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, Oct.
1985, pp. 501-538.

25. Harrison, W. L., "Compiling Lisp for Evaluation on a Tightly Coupled Multiproces-
sor," Report No. 565, Mar. 1086, Center for Supercomputing Research and Develop-
ment, University of Illinois at Urbana-Champaign, Urbana, 1L.

26. Ilarrison, V. L., and Padua, D. A., "Representing S-Expressions for the Efficient
Evaluation of Lisp on Parallel Processors," Proceedings of the 1986 I.EE Interna-
tional Conference on Parallel Processing, 1986, pp. 703-710.

27. Hudak, P., "Para-Functional Programming," Computer, Vol. 19, No. 8, Aug. 1986,
pp. 60-70.

28. Iluson, C. A., "An In-line Subroutine Expander for Parafrase," Report No. 82-1118,
December, 1082, M.S. thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL.

29. Kowalik, J. S., Parallel MIMD Computation: IiEP Supercomputcr and Its Applica-
tions, The MIT Press, Cambridge, M., 1085.

30. Kuck, D. J., Kuhn, R. I., Padua, D. A., Leasure, B., and Wolfe, M. J., "Dependence
Graphs and Compiler Optimizations," Proceedings of the 8th ACM Symposium on

24

Principles of Programming Languages (POPL), 1981, pp. 207-218.

31. Kuck, D. J., Kuhn, R. H., Leasure, B., and Wolfe, M. J., "The Structure of an
Advanced Retargetable Vectorizer," Tutorial on Supercomputers: Design and Appli-
cations, IEEE Press, New York, NY, 1984, pp. 168-178.

32. Larson, J., "Cray X-Mp Hardware Performance Monitor," Cray Channels, Winter,
1986, pp. 18-19.

33. Lawrie, D. H., Layman, T., Baer, D., and Randal, J. M., "Glypnir- A Programming
Language for Illiac IV," Communications of the ACM, Vol. 18, No. 3, Mar. 1975, pp.
157-164.

34. LeBlanc, T. J., and Mellor-Crummey, J. M., "Debugging Parallel Programs with
Instant Replay," IEEE Transactions on Computers, Vol. C-36, No. 4, April, 1987,
pp. 471-482.

35. Loveman, D. B., "Program Improvement by Source-to-Source Transformation,"
Journal of the ACM, Vol. 24, No. 1, Jan. 1977, pp. 121-145.

36. McGraw, J., Skedzielewski, S., Allan, S., Grit, D., Oldehoeft, R., Glauert, J., Dobes,
I., and Hohensee, P., "SISAL: Streams and Iteration in a Single Assignment
Language: Reference Manual," Report No. M-146, Revision 1, Mar. 1985, Lawrence
Livermore National Laboratory, Livermore, CA.

37. Metcalf, M., "Fortran 8X - The Emerging Standard," ACM Fortran Forum, Vol. 6,
No. 1, April 1987, pp. 28-47.

38. Millstein, R. E., "Control Structures in Illiac IV Fortran," Communications of the
ACM, Vol. 16, No. 10, Oct. 1973, pp. 621-627.

39. Nikhil, R. S., Pingali, K., and Arvind, "Id Noveau," Computation Structures Group
Memo No. 265, July 1986, Laboratory for Computer Science, M.I.T., Cambridge,
MA.

40. Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems,
Sequent Computer Systems, Incorporated, Beaverton, OR, 1985.

.1. Padua, D. A., and Wolfe, M. J., "Advance Compiler Optimizations for Supercom-
puters," Communications of the ACM, Vol. 29, No. 12, Dec. 1986, pp. 1184-1201.

42. Paul, G., "VECTRAN and the Proposed Vector/Array Extensions to ANSI FOR-
TIRAN for Scientific and Engineering Computation," Report No. RC 9223 (#40515),
Jan. 1982, IBM T.J. Watson Research Center, Yorktown Heights, NY.

.3. Paul, G., and Wilson, M. W., "The Vectran Language: An Experimental Language
for Vector/Matrix Array Processing," Report No. G320-3334, Aug. 1975, IBM Palo
Alto Scientific Center, Palo Alto, CA.

14. Pavelle, R., "M.CSYMIA: Capabilities and Applications to Problems in Engineering
and the Sciences," Applications of Computer Algebra, Kluwer Academic Publishers,
Norwell, MAtk, 1985, pp. 1-61.

-15. Scarborough, R. C., and Kolsky, II. G., "A Vectorizing Fortran Compiler," IB.,1
Journal of Research and Development, Vol. 30, No. 2, Mar. 1986, pp. 163-171.

.16. Sequent Computer Systems, Incorporated, "Dynix PDBX Debugger User's Manual,"
No. 1003-.42756, May, 1086, Sequent Computer Systems, Incorporated, Ileaverton,
Ol.

17. Shapiro, E., "Concurrent Prolog: A Progress Report," Computer, Vol. 19, No. 8,

25

Aug. 1988, pp. 44-58.

48. Smith, B. J., "A Pipelined, Shared Resource MIMD Computer," Proceedings of the
1978 IEEE International Conference on Parallel Processing, 1978, pp. 6-8.

49. Steele, G. L., and Hillis, V. D., "Connection Machine Lisp: Fine-Grained Parallel
Symbolic Processing," Proceedings of the 1986 ACM Conference on Lisp and Func-
tional Programming, Cambridge, MA, Aug. 1986, pp. 279-297.

50. Stone, J. M., Darema-Rogers, F., Norton, V. A., and Pfister, G. F., "Introduction to
the VM/EPEX FORTRAN Preprocessor," Report No. RC 11407 (+51329), Sept.
1985, INM T.J. Watson Research Center, Yorktown Heights, NY.

51. The Rand Corporation, "Reduce User's Manual," No. CP78, Santa Monica, CA,
1085.

52. Triolet, R., Irigoin, F., and Feautrier, P., "Direct Parallelization of Call State-
ments," Proceedings of the ACM SIGPLAN 88 Symposium on Compiler Construc-
tion, SIGPLAIN No. 21, 7, July 1986, pp. 176-185.

53. University of California, UNIX User's Manual, Reference Guide-4.2 Berkeley
Software Distribution, Computer Science Division, University of California, Berkeley,
CA, 1084.

I~

I'
"-2? -

